Almost complex parallelizable manifolds: Kodaira dimension and special structures

نویسندگان

چکیده

Abstract We study the Kodaira dimension of a real parallelizable manifold M , with an almost complex structure J in standard form respect to given parallelism. For $$X = (M, J)$$ X = ( M , J ) we give conditions under which $${{\,\textrm{kod}\,}}(X) 0$$ kod 0 . provide examples case $$M G \times G$$ G × where is compact connected Lie group. Finally describe geometrical properties manifolds framework statistical geometry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stably and Almost Complex Structures on Bounded Flag Manifolds

We study the enumeration problem of stably complex structures on bounded flag manifolds arising from omniorientations, and determine those induced by almost complex structures. We also enumerate the stably complex structures on these manifolds which bound, therefore representing zero in the complex cobordism ring Ω∗ .

متن کامل

Kodaira Dimension of Moduli of Special Cubic Fourfolds

A special cubic fourfold is a smooth hypersurface of degree three and dimension four that contains a surface not homologous to a complete intersection. Special cubic fourfolds give rise to a countable family of Noether-Lefschetz divisors Cd in the moduli space C of smooth cubic fourfolds. These divisors are irreducible 19-dimensional varieties birational to certain orthogonal modular varieties....

متن کامل

Kodaira Dimension and Symplectic Sums

Modulo trivial exceptions, we show that symplectic sums of symplectic 4-manifolds along surfaces of positive genus are never rational or ruled, and we enumerate each case in which they have Kodaira dimension zero (i.e., are blowups of symplectic 4-manifolds with torsion canonical class). In particular, a symplectic four-manifold of Kodaira dimension zero arises by such a surgery only if it is d...

متن کامل

Duality, Quantum Mechanics and (Almost) Complex Manifolds

The classical mechanics of a finite number of degrees of freedom requires a symplectic structure on phase space C, but it is independent of any complex structure. On the contrary, the quantum theory is intimately linked with the choice of a complex structure on C. When the latter is a complex–analytic manifold admitting just one complex structure, there is a unique quantisation whose classical ...

متن کامل

Potential Theory on Almost Complex Manifolds

Pseudo-holomorphic curves on almost complex manifolds have been much more intensely studied than their “dual” objects, the plurisubharmonic functions. These functions are standardly defined by requiring that the restriction to each pseudo-holomorphic curve be subharmonic. In this paper subharmonic functions are defined by applying the viscosity approach to a version of the complex hessian which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Manuscripta Mathematica

سال: 2023

ISSN: ['0025-2611', '1432-1785']

DOI: https://doi.org/10.1007/s00229-023-01496-1